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ABSTRACT

In many applications, the measure of a robot’s intelligence is its
usefulness to a user. This implies that a measure of a robot’s
intelligence is a measure of how well a human and a robot work
together. In human-robot teams, two components determine team
efficiency: neglect toleranceand interface efficiency. In this paper,
we a) present anevaluation technologywhich uses secondary tasks
to obtain measures of these two components, b) develop the related
metrics of instantaneous robot performance and world complexity,
and c) evaluate three systems using these measures.

KEYWORDS: human-robot interaction, interface efficiency, ne-
glect tolerance

1. INTRODUCTION

Fully autonomous robots do not meet the needs of most
users. Rather, most users want robots that will help them
accomplish a job. These robots must be able to interact
effectively with humans as well as perform tasks semi-
autonomously. To date, many robotic systems exist at one
of two extremes. At one extreme are systems with purely
teleoperated robots, where a human is always attending to
a robot and the robot has very little autonomy. At the other
extreme are systems with so-called fully autonomous robots
that can be programmed and left to do a job, but frequently
need to be reprogrammed or re-engineered since systems fail
or need to be updated.

Between these two extremes are a set of systems with
robots that are autonomous enough to do a lot of work, but
require interactions with humans to accomplish meaningful
tasks. We want to measure the effectiveness of these systems.
There are two components which determine the usefulness of
these systems: how much the robot can do autonomously and
how much the robot supports human interaction. We capture
these notions in two metrics:neglect toleranceand interface
efficiency.

In order to obtain these measures, we first develop
the related metrics of instantaneous performance and world
complexity. We use these related metrics in an evaluation
technology that can be used to estimate interface efficiency
and neglect tolerance. The evaluation technology estimates
measures of neglect tolerance and interface efficiency by using
secondary task experiments in user studies.

In this paper, we will first discuss work related to this
topic. In section 3, we will describe neglect tolerance and
interface efficiency in human-robot systems and their related
metrics. In section 4, we will describe an evaluation technology

for obtaining the measures described in section 3. In section 5,
we will describe and evaluate three human-robot systems
using this evaluation technology, which includes a user study
involving 40 test subjects. Finally, we will summarize the
contributions of this paper in section 6.

2. RELATED WORK

Conway et al. in [4] presents a taxonomy of human-
machine interaction. The taxonomy includes teleoperation,
shared control, traded control and supervisory control. Sheri-
dan discusses both teleoperation and supervisory control in
detail in [17]. Various forms of shared-control have been used
[7], [16]. Traded control has become popular to avoid undo
burden on the operator [9]. Traded control, however, presents
serious challenges both from the human’s and the robot’s
perspective [11].

Arkin’s group has done a lot of work in robot teaming.
Such work includes the teleoperation of a group of robots
by a single input from an operator [1]. This same idea was
used in [10] for telemanipulation. Goldberg’s work in [8] is
related to this idea. However, instead of having one operator
control multiple robots, Goldberg has many operators control
one robot. This is important because it provides a foundation
for multiple user/multiple robot interactions.

A powerful notion in human-robot interaction is adjustable
autonomy, which captures the notion that the autonomy level
of a robot can be changed. This principle has been used
extensively in the literature (e.g., [6], [14]). An important
principle related to adjustable autonomy is that of mixed-
initiatives [15], which poses the question of who has control
in a system at a given moment and who is responsible
for initiating control transitions. Scerri and associates have
developed methods which address the issues of adjustable
autonomy and mixed-initiatives in [13].

3. ASSESSINGHUMAN -ROBOT I NTERACTIONS

In a situation in which a human interacts with a remote
robot over a communication network, there exist two different
loops involving three different agents: the human, the robot,
and the interface between the human and the robot. The
first loop involves the human and the interface. Information
about the robot and its environment is delivered from the
interface to the human. The human processes this information
and determines a course of action which he/she believes
should be taken. The human’s desired course of action is then



communicated to the interface through a control element. The
second loop involves the robot and the interface. The interface
communicates the human’s input to the robot. The robot then
combines this input with its artificial intelligence to act in its
world. The robot receives information about the world through
its sensors which it forwards to the interface

A lesson learned from process automation is that de-
signing a system without consideration for human factors
frequently fails [2], even when humans are well-trained and
highly motivated. Therefore, attention should be focused on
making the interface and the robot more intelligent in the sense
that they support human interaction. Within this context, we
define aninteraction schemeas anautonomy modeof the robot
and aninterfacebetween the human and the robot. In order
to design a new interaction scheme, we can manipulate either
the interface or the robot’s artificial intelligence (e.g. autonomy
mode). To be able to compare various interfaces and autonomy
modes, we need a way of measuring which ones are better. In
the rest of this section we discuss the elements that determine
these measures.

3.1 Neglect Tolerance

Neglect tolerance is a measure of the effectiveness of
a robot’s autonomy mode. This term is used to refer to the
way in which a robot’s expected performance changes when
it is neglected by humans (i.e., when human attention is
focused elsewhere). As a general trend, as neglect increases,
robot performance decreases. How much robot performance
decreases depends on the interaction scheme that is being
employed. Figure 1 conceptualizes how one might expect
neglect to affect performance for different kinds of interaction
schemes. In the figure, the performance of an interaction
scheme using a teleoperated robot degrades quickly as the
human neglects the robot. The performance of an autonomous
robot does not tend to degrade much over time, although its
peak performance usually would not be expected to be as high
as a teleoperated robot.

Fig. 1. Hypothesized neglect tolerance of interaction schemes with various
autonomy modes for a world of constant complexity.

As discussed in the introduction, teleoperation and full
autonomy lie on the extremes of human-robot interactions.
There exist a large number of autonomy modes which require
different degrees of interactions and are represented in Figure 1
by a point-to-point scheme in which a robot is given a
command, such as “turn left at the next intersection,” and is

then expected to carry that command out autonomously, after
which more interactions are required.

3.2 Interface Efficiency
Interface efficiency is a measure of the effectiveness of

an interface. When a human operator’s attention is turned to
a robot (we use the phraseservicing the robotto describe
this action), we would expect the robot’s performance to
change, hopefully for the better. The way in which the robot’s
performance changes during servicing depends on the interac-
tion scheme being employed. The interface of an interaction
scheme affects the time it takes for a human to gain relevant
situation awareness, decide on a course of action, determine
the inputs to give to the robot, and then communicate those
inputs to the robot.

A poorly designed interface may cause the process of
gathering information by the human to become a task in and
of itself. Consider an extreme example in which information
about obstacles around a robot is communicated to the human
operator via text. In such a situation, the human operator must
read the information and create a mental representation of the
world around the robot (which could take considerable time)
before generating a plan about how to deal with the obstacles.
Thus, an interface from which information is hard for the
operator to extract extends the time for the human to switch
from one task to another.

Figure 2 shows how interface efficiency could hypotheti-
cally affect the performance of a robot for different interaction
schemes. The figure expresses the idea that changes in an
interaction scheme affect the way in which the performance
of a robot changes during interactions.

Fig. 2. Qualitative representations of interface efficiency for various presen-
tations of information.

3.3 World Complexity
Up to this point, we have ignored the effects of world

complexity on neglect tolerance and interface efficiency. Con-
sider, however, the two worlds shown in Figure 3. It seems
obvious that it would be easier for a robot to navigate through
world b than to navigate through worlda. Thus, the complexity
of the robot’s environment affects robot performance. Interac-
tion schemes that are designed for a particular level of world
complexity may not perform well for other world complexities.
Intuitively, robot performance generally decreases as world
complexity increases.



Fig. 3. Two worlds with differing world complexities.

Some interaction schemes scale better to the effects of
complexity than do others. An interaction scheme that scales
well to complexity (i.e., robot performance changes little with
changing world complexity) is said to becomplexity tolerant.
Any metric which claims to estimate robot performance must
take into account world complexity.

3.4 Combining Neglect Tolerance and Interface Ef-
ficiency

The performance of a semi-autonomous robot declines as
human attention is spent on other tasks and/or the complexity
of the world increases. Additionally, effective human-robot in-
teractions should allow performance levels to remain high. This
implies that interactions must be frequent enough and last long
enough to maintain sufficiently high robot performance levels.
The combination of neglect tolerance and interface efficiency
determine the frequency and duration of these interactions.

To illustrate this, consider Figure 4. In the figure, moving
from left to right along the horizontal axis, a robot begins at
performance level zero. A human operator begins to interact
with the robot (Task 1). When this occurs, performance is
modeled as an interface efficiency curve (see Figure 2). When
a human terminates the interaction and turns his/her attention
elsewhere (Task 2), the robot performance level begins to dete-
riorate and is modeled as a neglect tolerance curve (see Figure
1). In order to maintain an acceptable level of performance
from the robot, the human must again turn his/her attention
back to the robot before the robot performance degrades too
far.

Acceptable frequencies and durations of human-robot
interactions can be found using this method. By changing the
minimum acceptable performance level, the necessary inter-
actions change, as well as the robot’s average performance.
As an example, consider decreasing the minimum acceptable
performance level shown in Figure 4. When this is done, the
robot can be neglected longer before the human must interact
with it again. Thus, the frequency of interactions between
the human and the robot decreases. Additionally, changing
the frequency of interactions may also affect the duration of
the interactions which must occur. Therefore, lowering the
minimum acceptable performance level decreases the opera-
tor’s workload. However, observe that lowering the minimum
acceptable performance level also decreases the robot’s average

Fig. 4. Measures of neglect tolerance and interface efficiency can
be combined to obtain acceptable interaction rates, each of which
corresponds to a different average robot performance.

performance. Likewise, increasing the minimum acceptable
performance level increases both operator workload and robot
performance,

The above method allows for robot performance, which is
the robot’s average performance over an interaction cycle, to
be compared with a time-based workload metric calledRobot
Attention Demand (RAD)[12]. The RAD is given by don

don+doff
,

wheredon is the average time spent servicing the robot anddoff

is the neglect time. If the time the user spends servicing the
robot is large compared to the time the user spends neglecting
the robot, the workload, or RAD, is high. In contrast when
the time spent servicing the robot is small compared to the
time spent neglecting the robot, the workload is high. The
most useful interaction schemes offer low workload and high
performance.

3.5 Mathematical Measures of Usefulness

Let π denote aninteraction scheme; thus,π represents a
particular interface and autonomy level pair. The performance
of a robot employing interaction schemeπ is defined by a
random process indexed by timet, world complexityc, and
the duration of the previous lapse in interactions,tN (neglect
time), between the human and the robot. More formally, the
performancep of a robot for a given task is defined as

p = V (π; t, c, tN ) (1)

where c = C(s) in which C is a world complexity metric
(which we will explain later in this section) ands is a set of
states.

Equation (1) uses the generic time termt. However, time
is accessed differently by the neglect tolerance metric than it
is by the interface efficiency metric. Time is accessed by the
neglect tolerance metric as time-off-tasktoff , which denotes the
time elapsed since the robot was last serviced. The interface
efficiency metric accesses time by time-on-taskton, which
denotes the time elapsed since servicing began. Thus, if the
robot is currently being serviced, thent is ton. If the robot is



being neglected, thent is toff . Therefore, equation (1) becomes

p = V (π; t, c, tN ) =
{

VS(π; ton, c, tN ) if being serviced
VN (π; toff , c) otherwise (2)

where the variables are defined as before. Thus,
VS(π; ton, c, tN ) is a measure of the interface efficiency
of π and VN (π; toff , c) is a measure of the neglect tolerance
of π. Notice that neglect tolerance is not dependent ontN .
This is based on the assumption that interactions will always
bring robot performance up to peak levels, independent of the
previous neglect time, which means thatVN (π; toff = 0, c)
is independent oftN . For simplicity, we often refer to
V (π; t, c, tN ), VS(π; ton, c, tN ), and VN (π; toff , c) as V (π),
VS(π), andVN (π) respectively.

As mentioned previously,V (π) indicates the average
frequency and duration of interactions that should take place
between a human and a robot for any minimum acceptable per-
formance level. The average performance of a robot employing
interaction schemeπ can be estimated using these acceptable
interactions. Such calculations can be used to identify the
strengths and weaknesses of an interaction scheme.

3.6 Related Metrics

We mentioned in the introduction that measures of neglect
tolerance and interface efficiency depend on two metrics. The
first of these is an instantaneous performance metric. The
second is a complexity metric.

1) Instantaneous Performance Metrics:In this paper, the
termperformance metric1 is used to denote theworkperformed
by a robot with respect to that robot’s, or, perhaps, some
other object’s,capacityto perform work. Robotperformanceis
simply the ratio work

capacity . Note that performance can be either
positive or negative, and can take on any value in the range
[-1, 1].

Continuous robot performance can sometimes be difficult
to measure. In many instances, it is very easy to measure the
performance of a robot after it has completed a task, but it is
difficult to measure performance while the task is in progress.
In this paper, however, we assume that performance can be
measured or estimated continuously, and leave situations in
which performance can not be measured or estimated contin-
uously to future work.

The way in which performance is measured can be differ-
ent for each task. The neglect tolerance and interface efficiency
metrics require only that at any given time, an estimate of
the instantaneous performance2 of the robot be available. This
implies that we must be able to estimateinstantaneous work
and instantaneous capacityfor work as well. Assuming we

1The actual performance metric should not be confused with the per-
formance prediction which the interface efficiency and neglect tolerance
metrics perform. The Interface efficiency and neglect tolerance metrics use
an instantaneous performance metric to classify robot actions so that future
robot performance can be predicted.

2We use the term instantaneous performance to indicate the performance of
a robot over a small time interval.

have these estimates, we have

ipt =
iwt

ict
(3)

where ipt is the instananeous performance at timet, iwt is
the instantaneous work performed at timet and ict is the
instantaneous capacity for work at timet.

As an example, consider the task of navigating a robot
through a maze world towards a goal position. In this task, a
robot’s capacity is simply the speed at which it approaches its
goal if it takes the optimal path at top speed. Thus, a robot’s
instantaneous performance is simply the rate at which it is
actually approaching its goal divided by this capacity. This
must be a value between -1 and 1, so it satisfies the conditions
of an instantaneous performance metric.

2) World Complexity Metrics:Like performance, world
complexity is also difficult to measure. World complexity
is, in fact, somewhat subjective. A world can be considered
relatively simple or very complex, depending on the task being
performed. Additionally, to one set of abilities a world may be
considered very complex, whereas to another set of abilities
the same world may be considered quite simple.

This being said, world complexity metrics are an im-
portant part of the neglect tolerance and interface efficiency
metrics. We do not specify how world complexity must be
measured for all tasks, as such a specification would be
impractical. We only say that an estimate of world complexity
is required. How this is done is left to the system designer.
Good world complexity metrics, however, tend to assign high
complexity estimates to environments which make a task
difficult for a robot to perform, and low complexity estimates
to environments which make a task easy to perform.

We consider, again, the task of navigating a robot through
a maze world towards a goal position. The two dominant
factors that make navigation difficult are the branching factor
(number of intersections per area) of the robot’s world and the
amount of clutter (amount of obstacles per area) in the robot’s
world. The branching factor of the world can be estimated by
calculating from robot sonar signatures the number of different
paths the robot can take over a certain distance traveled. The
clutter of the environment can be estimated by combining (a)
directional entropy3, (b) change in velocity over time, and (c)
change in sonar values over time. Branching factor estimates
and clutter estimates can then be combined as a weighted sum
to obtain a world complexity estimate between 0 and 1.

This world complexity metric, although certainly not
perfect, does a fairly good job of estimating world complexity
for the experiments reported herein. As an example, Figure 3
shows two worlds used in the experiments described in this
paper. Using results from a teleoperation interaction scheme,
the world in Figure 3(a) had an average complexity of 0.373
and Figure 3(b) had an average complexity of 0.216. These
numbers indicate that indeed this world complexity metric

3Directional entropy is loosely defined as how often the robot changes
direction over time. High entropy correlates well with complex environments
and is computed using the techniques described in [3]



returns a significantly higher value for a world that would be
subjectively described as more complex.

Because of the ways in which a robot moves, world
complexity estimates may tend to be slightly different for each
interaction scheme. However, complexity estimates made by
this world complexity metric have shown to be similar for all
the interaction schemes we have used for the navigation task.

4. EVALUATION TECHNOLOGY

In the previous section, we discussed the random process
V (π), which is a measure of the neglect tolerance and interface
efficiency of the interaction schemeπ. In this section, we
discuss how this random process can be estimated nonparamet-
rically by designing and performing user experiments which
sufficiently sample the domain space of the random process
V (π).

The domain of the performance random process includes
time t, neglect timestN , and world complexityc. As we
discussed in the previous section, timet is separated into time-
on-taskton and time-off-tasktoff . To sufficiently sample the
time domain, we need users to spend time both servicing and
neglecting a robot. To do this, we require that the user perform
secondary tasks in addition to performing the primary task
of servicing the robot. To sample the neglect time domain
thoroughly, we must vary how long the robot is neglected.
This is achieved by varying the length of time that a user
must perform a secondary task before returning to service the
robot. The world complexity domain can easily be sampled by
simply performing the user experiments in worlds of various
complexities.

Since the domain of the random process is continuous, it
must be discretized so that it can be sampled sufficiently. Each
data sample from the user study is placed in a bin defined by
the discretized domain to form a nonparametric estimate of the
random processV (π).

Even after discretizing the domain of the random process,
an impractical number of test subjects must be used in order to
sufficiently sample the domain in this manner. This is because
each world complexity estimate is a sample from an unknown
random variable. We overcome this problem by applying a
gaussian filter to the data. Such an approach is justified by the
central limit theorem. A large number of test subjects must
still be used, but not nearly as many.

To summarize, the evaluation technology requires that
humans and robots must actually interact in real systems to
measure the neglect tolerance and interface efficiency of these
systems. Secondary tasks must also be used to thoroughly
sample the domain space of the random process.

5. EVALUATING THREE HUMAN -ROBOT SYS-
TEMS

We applied the evaluation technology described in the
previous section to analyze the effectiveness of three differ-
ent interaction schemes in performing the task of navigation
through a maze world. In this section, we describe the three

Fig. 5. The graphical user interface used in the user study.

interaction schemes and the user experiment used to estimate
the neglect tolerance and interface efficiency of these systems.
We will then show the results obtained from the user study.

5.1 Three Interaction Schemes
A snap shot of the GUI used by each interaction scheme

is shown in Figure 5. A god’s eye view of the world (in
the form of a topographical map) is shown in the center
portion of the GUI. The sensory information of the robot is
depicted graphically as well. Each of the autonomy modes
uses a shared-control algorithm described in [5]. The robot
takes a vector as input and combines this input with its sonar
information to determine, by using an algorithm which is a
variant of potential fields, which direction to travel. The way in
which the input vector is derived is what makes the autonomy
mode for each interaction scheme different. A brief description
of each of the three interaction schemes follows.

Teleop With this interaction scheme, the operator uses a
joytick to control the robot. The robot uses this input as the
input vector to the shared-control algorithm.

P2P With this interaction scheme, the operator tells the
robot what to do at the next intersection (e.g., “turn right at
the next intersection”). The operator uses a mouse to click
buttons on the GUI to indicate what the robot should do next.
The robot uses its sonars to determine if it is currently in
an intersection or not. If it is not in an intersection, the input
vector to the shared-control algorithm is simply a vector which
points the robot straight ahead. If the robot believes that it is
in an intersection and it has been told to turn right (or left)
the input vector is simply a vector pointing45◦ to the right
(or left).

Scripted With this interaction scheme, the operator uses a
mouse to drop a sequence of goal markers on the topographical
map to lead the robot to its goal. The input vector is obtained
by using the next goal marker in the sequence of goal markers
it must traverse. The vectorVg between the goal marker and
the robot is calculated. This vector is compared to the vector
Vd, which points in the direction the robot is facing. If the
angle between these vectors is greater than45◦, then the robot
simply spins in place (in the direction which decreases the
angle between the two vectors). If the angle is less than or



equal to45◦, then the robot simply inputsVg into the shared-
control algorithm. If there is no goal marker placed, the robot
stays in place.

5.2 A User Experiment
The user study was performed with simulated robots.

The simulated robots were designed with a sixteen-sonar ring
around the robot, a black and white camera image, and a
compass. While the estimates of neglect tolerance and inter-
face efficiency with simulated robots for the three interaction
schemes do not apply directly to robots in the real world, they
are sufficient to illustrate how the measurement technology
is used. The use of simulated worlds also makes it easy to
perform tests in a large variety of worlds.

The task to be performed in the experiment was the nav-
igation task discussed earlier. The robot and its goal position
were randomly assigned locations in a simulated world. The
user was instructed to guide the robot, using the assigned
interaction scheme, to the goal position. When the robot
reached the goal position, another goal was randomly placed
in the world for the robot to go to.

There were two secondary tasks performed by the op-
erators in the user study. The first was to service a second
robot. This made it possible to gather twice as much data per
test session. The second secondary task was to perform two-
digit addition and subtraction problems. This secondary task
was performed when both robots in the system were being
neglected.

The basic protocol followed in the experiments was to first
train the test subject on the interaction scheme to be used in the
next test session. When the operator felt comfortable with the
interaction scheme, the training session was terminated and a
test session began in one of twenty different worlds. In the test
session, the operator first serviced one of the robots. When the
operator was done servicing that robot he/she pushed a button
on the GUI, after which the operator was assigned one of
the secondary tasks. If it was time to service the other robot,
interactions with that robot began. Otherwise, the operator was
asked to do arithmetic problems until it was time to service
the other robot. This process continued for ten minutes. The
operator was asked to reach as many goals as possible as well
as answer correctly as many arithmetic problems as possible
during each ten-minute test session.

A slight variation was made to the above protocol when
the assigned interaction scheme wasTeleop. Since the per-
formance of a robot employingTeleop quickly goes to zero
when the robot is neglected, there was not very much incentive
for the operator to ever neglect the robot. Thus, interactions
between the operator and the robot being serviced were auto-
matically terminated after ten seconds, after which the operator
was assigned another task.

Each test subject took part in three ten-minute test ses-
sions, using a total of two different interaction schemes. A total
of forty test subjects were used in all, so 120 test sessions were
performed. Of these sessions, 15 were dedicated to theTeleop

interaction scheme, 48 to theP2P interaction scheme, and 57
to theScripted interaction scheme.

As mentioned previously, the domain space of the random
process, consisting of the variablestN , t, and c, must be
properly discretized. In order fortN to be sampled sufficiently
for each interaction scheme, some neglect times, which are
determined by a computer, must be extended until the expected
performance of the robot approaches zero. This is a different
length of time for each interaction scheme sotN must be
discretized differently for each interaction scheme. ForTeleop,
neglect times took on only one value since robot performance
immediately dropped to zero upon being neglected. ForP2P ,
the neglect time domain was divided into bins of 5, 10, 15, 20,
25 and 30 seconds. ForScripted, the neglect time domain was
divided into bins of 10, 20, 30, 40, 50, and 60 seconds. The
time (t) dimension of the domain space was discretized into
half second increments and the world complexity (c) dimension
of the domain space was discretized into chunks of 0.05 units.

The instantaneous performance and world complexity
metrics described in section 3 were used to estimate the
instantaneous performance of the robot and the complexity of
its world. These estimates along with time, operator actions
(such as mouse clicks and joystick movements), and robot
state information were logged for use in computing the random
processes for each interaction scheme.

5.3 Results
Figure 6 shows the mean of the random processes

V (Teleop), V (P2P ; tN = 30sec.), and V (Scripted; tN =
60sec.). The trends of the graphs reflect the trends we hy-
pothesized earlier in this paper. As complexity increases, per-
formance decreases. Additionally, as a robot is neglected, per-
formance decreases. This is true for each interaction scheme,
although at varying degrees. The mean of the random processes
also illustrates the neglect tolerance and interface efficiency of
each of the interaction schemes.

Figure 7 shows the expected performance of a robot
using each of the three interaction schemes in an environment
with world complexity 0.35. Figure 7(left) shows the interface
efficiency of the interaction schemes. As can be seen, the
Teleop interface is the most efficient at bringing the robot from
low performance levels to high performance levels, as it takes
only a few seconds for it to do so. The other two interaction
schemes take about ten seconds longer to reach peak expected
performance levels than doesTeleop. Figure 7(right) shows
the neglect tolerance of the three interaction schemes at a
world complexity of 0.35. It is obvious from this graph, as
well as from Figure 6, thatScripted has a much higher
tolerance to neglect than doesTeleop andP2P , as expected
performance levels decay much slower as the robot is neglected
for increasing amounts of time.

Given V (Teleop), V (P2P ), and V (Scripted), we can
estimate average interactions required by the interaction
schemes by setting a minimum acceptable performance level
as shown in Figure 4. These results are shown in Figure 8



Fig. 6. Plots of the mean of the random processesV (Teleop), V (P2P ; tN = 30sec.), andV (Scripted; tN = 60sec.).

Fig. 7. Shows the measures of interface efficiency (left) and neglect tolerance (right) with world complexity 0.35 forTeleop, P2P andScripted.

Fig. 8. Shows the average interactions which should take place (based off a minimum acceptable performance level of 50% of peak values) for the three
interaction schemes.

for most world complexity levels. The minimum acceptable
performance level used to obtain these interactions was 50%
of peak expected performance levels. As can be seen from
the figure, theScripted interaction scheme requires less
frequent interactions than do the other interaction schemes.
Additionally, for most levels of world complexity, the average
interaction time required byScripted is less than that required
by P2P . Thus, human-robot interactions withScripted re-
quire less operator workload than do the other two interaction
schemes.

The frequency and duration of interactions, encoded as
time-to-task and time-off-task in Figure 8, define the opera-

tor workload (or RAD) of an interaction scheme. Figure 9
shows this operator workload (shown astime−on−task

totaltime ) plotted
against the average expected performance of the interaction
scheme when such interactions are followed. Plots are shown
for three different levels of world complexity. In general, as
world complexity increases, points tend towards the bottom-
right corner of the plots (from the top-left corner). An inter-
action scheme’s complexity tolerance is shown by how slowly
it approaches the bottom-right corner as world complexity
increases. Note thatP2P approaches the bottom-right corner
faster than the other two interaction schemes. Thus,Scripted
andTeleop are more complexity tolerant than isP2P .



Fig. 9. Compares the interaction schemes in terms of % operator workload (or RAD) and robot performance for different levels of world complexityc.

Figure 9 also illustrates the tradeoff that occurs between
operator workload and robot performance. Consider the results
when world complexity is equal to 0.20 (at left). In this figure,
P2P has a higher expected performance than doesScripted.
However, this comes at the cost of increased operator work-
load. This tradeoff means that unless one interaction scheme
completely dominates the other, the best interaction scheme to
be used is dependent on the circumstances of the system.

To summarize, theScripted interaction scheme has a
higher tolerance to neglect than do the other interaction
schemes. SinceScripted requires no more interaction times
than doesP2P , it is usually a more effective interaction
scheme (in the simulator used in the user study) than isP2P .
While Teleop has the most efficient interface efficiency of the
three interaction schemes, it requires constant attention from
the operator, and thus is not desireable for many situations.
Additionally, for most world complexity levels, the average
performance of aScripted robot is about the same as that of
a Teleop robot.

6. SUMMARY

Since most users want robots that will help them accom-
plish tasks, human-robot interactions are required. We want
robots that interact effectively with humans and are capable of
performing complex tasks with varying degrees of autonomy.
In this paper, we discussed two components which determine
the usefulness of a system: how much the robot can do
autonomously and how much the robot supports human-robot
interactions. We captured these components in the notions
of neglect toleranceand interface efficiency, and developed
metrics for them.

To estimate measures of neglect tolerance and interface ef-
ficiency, we described an evaluation technology. The evaluation
technology requires the use of secondary task in user studies.
We performed a user study using this evaluation technology to
measure the interface efficiency and neglect tolerance of three
human-robot systems. These measures allowed us to compare
the three systems.

Although the metrics described in the paper are powerful
for the analysis of interaction schemes, the user studies can be
very time consuming and sometimes impractical. Thus, finding
more efficient methods for measuring the neglect tolerance and
interface efficiency of human-robot systems is needed.
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